Whelk-O® 1
Chiral Stationary Phase

Advance Your Chiral Method Development in HPLC or SFC

- Excellent method development column with applicability to a wide range of compound classes
- Alternate selectivity compared to polyssacharide chiral stationary phases
- High loading capacity for excellent scalability in HPLC and SFC for preparative applications
- Invert peak elution order with availability of both enantiomeric phases for difficult separations
- Diverse range of particle size choices and dimensions to fit any purpose
- Stable, long term performance for analytical and preparative applications

Chemistry
General purpose Pirkle-type chiral phase designed to achieve selectivity through pi-pi interactions, dipole moment, hydrogen bonding interactions, and additional selectivity based on structure. Fully endcapped and bonded to high purity silica. Covalent bonding makes it compatible with all commonly used mobile phases, including aqueous systems. This column can be used in both normal phase and reversed phase.

Applications
- Chiral Screening
- Quality Control and Quality Assurance
- Chiral Purifications in Drug Discovery & Development
- Agricultural and Food Safety
- Animal Health

Anatoxin – A
- Column: Whelk-O 1 5 µm 25 cm x 4.6 mm
- Mobile Phase: (70/30) Hexane/Ethanol + 0.1% TFA
- Flow Rate: 1.5 mL/min
- Detection: UV 227 nm
- k'1: 0.30
- α: 4.35
- CAS#: 64285-06-9

Medetomine
- Column: Whelk-O 1 S,S 5 µm 25 cm x 4.6 mm
- Mobile Phase: (75/25) Hexane/IPA + 0.1% DEA
- Flow Rate: 1.5 mL/min
- Detection: UV 254 nm
- k'1: 1.09
- α: 2.09
- CAS#: 86347-14-0

Nutlin-3
- Column: Whelk-O 1 5 µm 25 cm x 4.6 mm
- Mobile Phase: 100% Methanol
- Flow Rate: 1.5 mL/min
- Detection: UV 254 nm
- k'1: 1.14
- α: 2.93
- CAS#: 548472-68-0

Inversion of elution order on Whelk-O S,S and R, R

Key functional groups of the Whelk-O 1 involved in chiral recognition

N
H
O
H₃C

H-bond donor

Dinitrobenzamide π-system

Tetrahydrophenanthrene π-system

Whelk-O/R,R

Whelk-O/S,S

H-bond donor

Dinitrobenzamide π-system

N
H
O
H₃C

H-bond donor

Dinitrobenzamide π-system

Tetrahydrophenanthrene π-system
Product Ordering Information

<table>
<thead>
<tr>
<th>Phase Type</th>
<th>Column Length (mm)</th>
<th>Column ID (mm)</th>
<th>Particle Size (µm)</th>
<th>Part #</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S,S) Whelk-O1</td>
<td>50</td>
<td>2.1</td>
<td>3.5</td>
<td>1-780128-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>50</td>
<td>2.1</td>
<td>5</td>
<td>1-780155-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>100</td>
<td>2.1</td>
<td>3.5</td>
<td>1-780129-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>100</td>
<td>2.1</td>
<td>5</td>
<td>1-780154-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>50</td>
<td>4.6</td>
<td>3.5</td>
<td>1-780120-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>50</td>
<td>4.6</td>
<td>5</td>
<td>1-780152-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>100</td>
<td>4.6</td>
<td>3.5</td>
<td>1-780121-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>100</td>
<td>4.6</td>
<td>5</td>
<td>1-780151-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>150</td>
<td>4.6</td>
<td>5</td>
<td>1-780105-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>250</td>
<td>4.6</td>
<td>5</td>
<td>1-780101-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>250</td>
<td>21.1</td>
<td>5</td>
<td>1-780107-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>250</td>
<td>21.1</td>
<td>10</td>
<td>1-786635-300</td>
</tr>
<tr>
<td>(S,S) Whelk-O1</td>
<td>250</td>
<td>50</td>
<td>10</td>
<td>1-786703-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>50</td>
<td>2.1</td>
<td>3.5</td>
<td>1-780228-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>50</td>
<td>2.1</td>
<td>5</td>
<td>1-780255-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>100</td>
<td>2.1</td>
<td>3.5</td>
<td>1-780229-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>100</td>
<td>2.1</td>
<td>5</td>
<td>1-780254-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>50</td>
<td>4.6</td>
<td>3.5</td>
<td>1-780220-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>50</td>
<td>4.6</td>
<td>5</td>
<td>1-780252-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>100</td>
<td>4.6</td>
<td>3.5</td>
<td>1-780221-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>100</td>
<td>4.6</td>
<td>5</td>
<td>1-780251-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>150</td>
<td>4.6</td>
<td>5</td>
<td>1-780205-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>250</td>
<td>4.6</td>
<td>5</td>
<td>1-780201-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>250</td>
<td>21.1</td>
<td>5</td>
<td>1-780207-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>250</td>
<td>21.1</td>
<td>10</td>
<td>1-786335-300</td>
</tr>
<tr>
<td>(R,R) Whelk-O1</td>
<td>250</td>
<td>50</td>
<td>10</td>
<td>1-786709-300</td>
</tr>
</tbody>
</table>

Additional column dimensions available upon request.

About Regis Technologies, Inc

Regis Technologies, Inc. is a privately held company that provides synthesis and separations services to the pharmaceutical, biotechnology and other related industries. Regis provides innovative chromatography products and services, especially those with a chiral emphasis, through the utilization of our extensive organic expertise and collegiate collaborations. For more information, please visit www.RegisTech.com